On circulant and two-circulant weighing matrices
نویسندگان
چکیده
We employ theoretical and computational techniques to construct new weighing matrices constructed from two circulants. In particular, we construct W (148, 144), W (152, 144), W (156, 144) which are listed as open in the second edition of the Handbook of Combinatorial Designs. We also fill a missing entry in Strassler’s table with answer ”YES”, by constructing a circulant weighing matrix of order 142 with weight 100.
منابع مشابه
Computation of the q-th roots of circulant matrices
In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.
متن کاملOn circulant weighing matrices
Algebraic techniques are employed to obtain necessary conditions for the existence of certain circulant weighing matrices. As an application we rule out the existence of many circulant weighing matrices. We study orders n = 8 +8+1, for 10 ~ 8 ~ 25. These orders correspond to the number of points in a projective plane of order 8.
متن کاملSome New Results on Circulant Weighing Matrices
We obtain a few structural theorems for circulant weighing matrices whose weight is the square of a prime number. Our results provide new schemes to search for these objects. We also establish the existence status of several previously open cases of circulant weighing matrices. More specifically we show their nonexistence for the parameter pairs (n, k) (here n is the order of the matrix and k i...
متن کاملNew weighing matrices constructed from two circulant submatrices
A number of new weighing matrices constructed from two circulants and via a direct sum construction are presented, thus resolving several open cases for weighing matrices as these are listed in the second edition of the Handbook of Combinatorial Designs.
متن کاملThe Classification of Circulant Weighing Matrices of Weight 16 and Odd Order
In this paper we completely classify the circulant weighing matrices of weight 16 and odd order. It turns out that the order must be an odd multiple of either 21 or 31. Up to equivalence, there are two distinct matrices in CW (31, 16), one matrix in CW (21, 16) and another one in CW (63, 16) (not obtainable by Kronecker product from CW (21, 16)). The classification uses a multiplier existence t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 48 شماره
صفحات -
تاریخ انتشار 2010